
~ )  Pergamon 
Int. J. Multiphase Flow Vol. 21, No. 3, pp. 485-500, 1995 

Copyright © 1995 Elsevier Science Ltd 
0301-9322(94)00092-1 Printed in Great Britain. All rights reserved 

0301-9322/95 $9.50+ 0.00 

A CASCADE MODEL FOR NEUTRALLY BUOYANT 
DISPERSED TWO-PHASE HOMOGENEOUS 

TURBULENCE--II .  NUMERICAL SOLUTION A N D  
RESULTS 

V. JAIRAZBHOYt and L. L. TAVLARIDES~ 
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY 13244, 

U.S.A. 

(Received 4 May 1992; in revised form 8 December 1994) 

Abstract--The two-phase cascade model for homogeneous, neutrally buoyant turbulent dispersions 
proposed earlier (Jairazbhoy et al. 1995 Int. J. Multiphase Flow 21,467-483) results in a system of partial 
integrodifferential equations. These are the energy, intermittency and population balance equations, and 
they account for the effects of drop-eddy interactions. A semi-discretization technique is developed for 
the solution. The drop number densities are discretized non-uniformly, the integrals approximated by 
Gaussian quadrature, and the resulting transient ODEs solved numerically to steady state using an 
integrator package. The results represent steady, isotropic turbulence with constant power input in the 
large eddies. The effects of phase fraction, drop size, Reynolds number and the model parameter on the 
turbulent spectrum and drop populations are examined. It is observed that the energy contained in large 
eddies is unaffected by drops, while small eddies are damped considerably. At low phase fractions, the 
energy spectrum is essentially unchanged by the dispersion. At high phase fractions, however, selective 
damping of the smaller eddies results in a sharp drop-off in the spectrum, tantamount to an increase in 
the apparent viscosity. The relative energy loss contributions from drol~eddy terms vary from about 8% 
for some cases with a phase fraction of 0.01 to over 82% in some instances with a phase fraction of 0.2. 
It is also found that, when the drops are too large to reside in a small eddy, the drop distribution in these 
eddies is substantially different from the overall distribution. Computation results comparing the energy 
spectra are in agreement with the model of AI Tawed & Landau at smaller and intermediate wave 
numbers, over which range comparisons are valid. These results suggest the model displays potential for 
the description of dense two-phase flows of breaking and coalescing drops, while accounting for drop 
interactions. 

1. I N T R O D U C T I O N  

In a previous paper  (Jairazbhoy et  al. 1995), it was observed that  the mathemat ica l  model ing  of  
turbulence in dense liquid dispersions of  interact ing drops poses numerous  difficulties. Using a 
c o n t i n u u m  framework for the mean  flow, a two-phase cascade model  was developed to describe 
the local tu rbu len t  energy spectrum, and  hence the Reynolds stress term in the mean  m o m e n t u m  
balance. In the cascade model  of  Desnyansky  & Novikov  (1974) the spectrum is discretized, and  
an energy budget  formulated for each discrete wave number .  In the two-phase case, however, the 
n u m b e r  of eddies and  the n u m b e r  of drops of  each size are required for the es t imat ion of  their 
in teract ion frequencies. Hence, the Desnyansky  & Novikov  model  was extended to include 
equat ions  for the eddy intermit tency and  drop popula t ion  dis t r ibut ion at each discrete wave 
n u m b e r  (Jairazbhoy 1989; Ja i razbhoy e t  al. 1995). It  was suggested that  the interact ion process in 
a dispersion can be viewed as a series of  d r o p - d r o p  (particle-particle) and  drol>-eddy (par- 
ticle-fluid) collisions. The possible outcomes of interphase interact ion processes were analyzed, and  
a set of  d rop -eddy  events defined. The path of the droplet  dur ing  these events was examined,  and  
the effect on the three balances hence determined.  On inclusion of  the terms corresponding to the 
various interact ion processes, the two-phase cascade model  for homogeneous  turbulence was 

tPresent address: Rm C130, Electronics Technical Center, Ford Motor Co., 17000 Rotunda Drive, Dearborn, MI 48121, 
U.S.A. 

:~To whom correspondence should be addressed. 

485 



486 v.  J A I R A Z B H O Y  and L. L. T A V L A R I D E S  

shown to take the following form: 
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The expressions marked (I), (II) and (III)  refer to single-phase cascade, d r o p ~ d d y  interaction and 
breakage and coalescence terms in the popula t ion balance, respectively. F is the force o f  mode  
n = 1, required to sustain an equilibrium spectrum, and 6 is the Kronecker  symbol, u. ,  fl. and 
N . ( v ,  t )  are the n eddy characteristic velocities, intermittencies and number  densities, respectively. 
Here the term "n eddy"  refers to an eddy in the n th size range. The subscript n refers to the n th 
discrete wave number,  and takes values o f  1, 2 . . . .  , N, where N is the total number  o f  discretization 
intervals. Also, in [1]-[3] ct is a constant ,  C is the reverse spectral transfer coefficient, v is the 
kinematic viscosity, k .  is the wave number  o f  "n eddies", Pm is the density of  the mixture, v. is a 
typical velocity o f  "n eddies", D is a similarity exponent,  g . ( v )  is the breakage frequency of  size 
" v "  drops in "n eddies", v . ( v )  are the number  o f  daughter  droplets formed due to breakage of  a 
" v "  volume drop  in "n eddies", f t . (v ,  v ' )  is the daughter  drop distribution produced by breakage 
of  a parent  d rop  o f  volume of  v' ,  2.(v, v ')  is the collision efficiency between v and v '  drops in "n 
eddies", h. (v ,  v ' )  is the collision frequency between v and v '  drops in "n eddies" and (Vmax). is the 
max imum volume of  drops in "n eddies". Several expressions in the terms marked (II) are Stieltjes 
integrals with limits that  are functions o f  the dependent variables, u. and f l . .  These terms are 
summarized in table 1 and are examined in more detail elsewhere (Jairazbhoy 1989). The form of  
the integrals is typically 

I = I 1 dv d -'F 12 dVd + t /3 dvd 
t'do )n '1 d t'2 

Table 1. Summary of drop-eddy terms in a two-phase cascade model 

Equation No. Term Physical interpretation 

[11 (6EE). 
[11 (AET). 
[11 (AEs). 
[11 (AEs). 
[1] (AEDL 
[21 (h/~). 
[31 Fs(v) 
[3] FT(V ) 
[31 Fo(v) 

Energy lost due to grazing collisions 
Energy lost due to drop entrapment 
Energy lost due to eddy shattering 
Energy lost due to drop breakage 
Energy lost due to eddy turnover 
Intermittency sink term due to eddy shattering 
Net increase of size v drops due to eddy shattering 
Net increase of size v drops due to drop entrapment 
Net increase of size v drops due to eddy turnover 
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where drop volumes vt and v2 are functions of the eddy intermittencies and velocities. Integrands 
I,,  12 and/3 are smooth over the range of integration and are functions of the drop number density 
functions and the eddy intermittencies and velocities. 

This paper examines the numerical results of the partial integrodifferential equations [1]-[3] 
representing the two-phase cascade model for homogeneous turbulence. A semi-discretization 
procedure is used to solve the two-phase cascade model equations for specified initial conditions. 
The results presented in this paper are for drops that neither break nor coalesce. The effects of 
various system and model parameters on the steady-state energy and intermittency spectra, the 
local dispersed phase fraction, and the local drop size distribution are examined. The contribution 
of the dissipative particle-fluid terms in the energy equation [1] towards the total energy dissipated 
is also computed. The model is compared with others existing in the literature. 

2. LITERATURE REVIEW 

2.1. Studies on particle-turbulence interaction 

A number of studies have examined the effects of a particulate phase on the structure of 
turbulence (Kada & Hanratty 1960; Hjelmfelt Jr & Mockros 1966; Hetsroni & Sokolov 1971; 
Boothroyd & Walton 1973; Gore & Crowe 1989). They have observed that the viscosity, the 
integral scale, the turbulence intensity and viscous dissipation may all be affected. Kuchanov & 
Levich (1967) use a linearized particle equation of motion in a homogeneous, isotropic turbulent 
flow to determine a criteria for passive behavior of the mixture. Assuming Stoke's law, they develop 
an expression for the added energy dissipation in the presence of particles. Abramovich (1971) 
argues that in the process of turbulent fluctuating motion, fluid elements entrain foreign particles 
which are retarded under the action of drag, resulting in a decrease in the fluctuating velocity 
components of the flow. This argument resembles the rationale underlying the model presented in 
this paper. 

The effect of particles on the turbulence intensity is noticeable only when the larger, energy-con- 
taining eddies are affected. Owen (1969) considers a dilute suspension with t* << te and obtains the 
energy dissipation in the presence of particles as 

 =Eo l +  7 [51 

where t* is the particle relaxation time, t e is the time scale of energy-containing eddies, Eo is the 
turbulent energy dissipation rate in the absence of particles, p is the density and pp is the mass of 
particulate phase per unit volume of dispersion. Further, assuming that the turbulence length scale 
is unaffected for a given mean velocity profile, Owen obtains 

- 7 =  1 [61 
uo p 

where u' and uo are fluctuating velocity components in the presence and absence of particles, 
respectively. 

Hinze (1971) identifies several indirect interaction effects resulting in modification of the 
fluid-velocity field in the interspace between the particles: (a) an effect due to increased shear rates; 
(b) an effect due to wakes of particles; (c) effects due to the fact that the continuous phase occupies 
less space; and (d) effects due to particle cluster formation. Hinze also discusses the "crossing 
trajectories" effect which could be interpreted as the migration of particles from one eddy to 
another. Although this effect is usually associated with non-neutrally buoyant particles (Snyder & 
Lumley 1971; Meek & Jones 1973; Calabrese & Middleman 1979; Chen 1983), Hinze (1971) 
observes that for a neutrally buoyant discrete particle, crossing trajectories may yield particle 
diffusivities which are slightly higher than the fluid diffusivity. 

A1 Taweel & Landau (1977) propose a model to predict the modification of the Kolmogoroff 
spectrum by a dispersed phase in two-phase jets. They attribute the "extra dissipation process" to 
the inability of particles to follow turbulent fluctuations completely. Assuming the particles to be 
uniformly distributed, they estimate the average rate of energy dissipation per unit mass of the fluid 
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resulting from interphase (particle-eddy) interactions. Their analysis shows that the attenuation of 
high frequency fluctuations increases with increasing particle loading and increases with increasing 
particle diameter. Also, turbulence intensities are reduced. The modulation of the turbulence 
spectrum is given by 

[ 36~Wv ~kR~l E(k)~p = exp [7] 
E(k) D:ga'eTp Jo ~ J 

where E(k)T  P and E(k) are the two-phase and one-phase spectra, respectively, ~ is an empirical 
constant, W is the weight concentration of the dispersed phase, v is the kinematic viscosity, D is 
the particle diameter, q~ is the density ratio, ETp is the two-phase energy dissipation rate and Rk 
is the non-dimensional relative velocity. Although their study deals with non-neutrally buoyant 
suspensions, their philosophy and visualization of interphase interactions bear some resemblance 
to those in the present investigation. 

Elghobashi & Truesdell (1992) perform a direct simulation to examine the interaction 
between small solid particles and decaying homogeneous turbulence. They solve the exact 
time-dependent, 3-D Navier-Stokes and continuity equations in a cubical domain with periodic 
boundary conditions. In addition, they track the instantaneous velocity of each particle by 
integrating the Langrangian equation of particle motion. Their results show that the particles 
increase the fluid turbulence energy at high wave numbers. This increase acts as a barrier to 
the energy cascade process from the low wavenumber range, and promotes extra dissipation at 
high wave numbers. The net result is a reduction in all the turbulence length scales, and hence a 
lower turbulent diffusivity of carrier fluid turbulence. These results cannot be compared 
directly with ours because of the respective limitations of the studies. Elghobashi & Truesdell 
documented the effect of very large density ratios of very small particles at very small 
phase fractions, whereas, our model allows large drop sizes, large phase fractions but is limited 
to neutrally buoyant drops. 

3. SOLUTION, RESULTS AND DISCUSSION 

A detailed discussion on solution methods for population balances and the specific solution 
scheme employed for [1]-[3] balance equations are presented elsewhere (Jairazbhoy 1989). To 
summarize, the scheme uses a semi-discretization procedure which bears resemblance to the method 
of Valentas & Amundson (1966), and to the method of lines which has proved to be efficient for 
the solution of partial differential equations (Liskovets 1965). The procedure also permits the use 
of Gaussian quadrature for accurate evaluation of integrals. 

The number densities N,(v,t) are discretized using a successively-contained technique, 
compatible with a Gaussian quadrature scheme for the evaluation of the integrals. In some cases, 
Lagrange interpolation of the number densities is necessary for the calculation of these integrals. 
The resulting set of ordinary differential equations is solved by the integrator package EPISODEB 
(Byrne & Hindmarsh 1975). The major advantage of this method over that of Valentas & 
Amundson (1966) is that, for comparable accuracy, fewer discretization intervals are required. 
Therefore, fewer ODEs need to be solved. Also, EPISODEB provides more efficient integration 
than the predictor-corrector scheme used by Valentas & Amundson (1966). In addition, the 
non-uniform discretization permits a higher "density" of ODEs in the central region of the 
drop size distribution, and the quadrature weighting factors corresponding to integrals of the 
form specified in [1]-[3] can be chosen accurately. The disadvantage of the method is that the 
breakage and coalescence integrals in [3] have limits such that interpolation is required in the 
present scheme. If the method of Valentas & Amundson (1966) is used, interpolation of the number 
densities is unnecessary. 

The semi-discretization of [1]-[3] results in a set of ordinary differential equations arranged in 
the following manner: 

dH 
dt = G(H); H(o) =Ho [8] 
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where G represents the vector of functions describing the rate of change of u i, fli and Nij, Ho is 
the set of the initial values of the dependent variables, and H is the set of dependent variables 
arranged as follows: 

H = [ U l ,  i l l ,  N i l  . . . . .  Nl j  . . . . .  NI . . . . . .  Uh fli, Nil . . . . .  

mij . . . . .  mi . . . . . .  UN, ~N, NNI . . . . .  NNj . . . . .  Xsm] T [9]  

where Nij is the descritized number density of i eddies and j sized drops. Equation [8] is solved 
numerically using the integrator package EPISODEB. For all runs carried out in this work, the 
variable-step variable order implicit Adams method with functional corrector iteration, suitable for 
non-stiff problems, is used. The relative error tolerance is tightened until no significant difference 
is observed in successive runs. The number of discretization intervals representing the number 
density is also increased until "grid-independence" is achieved for each run. The initial drop size 
distribution is calculated from the Chen-Middleman correlation (1967), normalized by the desired 
phase fraction. Care is taken to ensure that drops larger than the maximum permissible size in an 
n eddy do not appear in these eddies. The starting values for u, and/~, are taken from the solution 
of  the single-phase cascade model. The set of equations in [8] is then integrated with a constant 
power input in the largest eddy, until steady state is achieved, simulating steady isotropic 
"turbulence in a box". 

3. I. Effect o f  system and model parameters 

The effects of four parameters on the energy, intermittency and drop size distributions are 
studied. The parameters are (1) NRe, the Reynolds number based on large eddy properties 
calculated as u,/k, v, where u, and k, are the large eddy velocity and wave number, respectively; 
( 2 )  D32 , the overall Sauter mean drop diameter; (3) Rr, the ratio of the maximum permissible radius 
of a drop in an n eddy, to the parent eddy radius; and (4) ~b, the overall dispersed phase fraction. 

The computations are carried out for three values of the Reynolds number--500, 1000, and 4000. 
Figures 1 and 2 present the energy and intermittency spectra for Reynolds numbers of 500 and 
4000, respectively. 

In both runs, the phase fraction is 0.1, the Sauter mean diameter is 1 mm, and the maximum 
dimensionless drop size Rr is 0.4. The triangles represent the single-phase energy spectrum, which 
is used to generate initial values or the integration. The curve is virtually a straight line in the central 
part of the spectrum, with a slope of about ( - 5 / 3 ) - - i n  agreement with the Kolmogoroff law. At 
a Reynolds number of 500 (figure 1), the smallest eddy size, indicative of the Kolmogoroff 
microscale, occurs at a wave number of 256 m-  1. At a Reynolds number of 4000 (figure 2), the 
wave number corresponding to the smallest eddies is 1024 m- ' .  These eddies are comparable in size 
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Figure 2. Energy and intermittency spectra for run 9: NR~ = 4000; ~b = 0.1; D32 = 1.0 mm; and R r =  0.4. 

to the drops (D32 = 1 ram) and are therefore susceptible to annihilation by drop-eddy collision 
(referred to as eddy shattering). Therefore, in figure 2, the intermittency factors at large wave 
numbers in the presence of droplets, represented by the symbol " + " ,  fall off rapidly. This behavior 
indicates that a large fraction of the volume associated with the smallest eddies is not annihilated 
by collision. On the other hand, large eddies contain too much energy to succumb to destruction 
by shattering events. A similar trend is observed in the two-phase energy spectrum, depicted by 
the squares in figure 2. A sharp drop in the energy spectrum is observed at large wave numbers, 
indicating the presence of destructive drop~ddy collisions. At the smaller Reynolds number, 
however, the intermittency spectrum shows no drop-off, indicating that the smaller eddies have 
sufficient energy to withstand drop-eddy collisions. 

The effect of the second phase on the lower end of the energy spectrum at a Reynolds number 
of 500, observed by comparing the squares with the triangles in figure 1, is less pronounced than 
at higher Reynolds numbers (figure 2). In both cases, the larger energy-containing eddies are 
essentially unaffected by the presence of drops, whereas the smaller eddies lose an observable 
amount of energy due to dissipative drop~ddy events. This steeper "cut-off" is tantamount to an 
increased apparent viscosity, i.e. a larger Kolmogoroff microscale, in agreement with prior 
observations (Hinze 1975). The overall dissipative effect of the drop--eddy interactions in figures 
1 and 2, as a fraction of the total energy lost by viscous and drop effects, is shown in entries 1 
and 9 of table 2. This fraction is calculated by dividing the dissipative energy contribution of the 
drop~ddy terms in [1] at steady state by the total power input to the system. It can be seen that 
at a higher Reynolds number, the relative drop-eddy energy losses are higher. 

Table 2. Summary  of  computer  runs  and corresponding d rop-eddy  energy losses 

Relative d r o p -  
Run  No.  Fig. Nos  NR= ~b D32 R r eddy losses (%) 

1 1 500 0.1 1.0 0.4 52.3 
2 - -  500 0.2 1.0 0.4 74.6 
3 - -  500 0.01 1.0 0.4 8.2 
4 3, 5 1000 0.1 2.0 0.4 63.2 
5 4, 6 1000 0.1 0.1 0.4 55.3 
6 7, 8 1000 0.1 2.0 0.2 63.5 
7 9 1000 0.2 2.0 0.4 82.5 
8 10, 11 1000 0.01 2.0 0.4 11.9 
9 2 4000 0. I 1.0 0.4 74.9 

10 - -  4000 0.1 0.1 0.2 67.9 
11 - -  4000 0.1 0.01 0.1 67.1 
12 - -  4000 0.1 1.0 0.1 64.0 

For  all runs: pC = 1 cP; Pc = 1000 kg/m3; Pd = 1000 kg/m 3. 
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Figure 3. Energy and intermittency spectra for run 4: NRe = I000; ~b = 0.1; D32 = 2.0 ram; and Rr= 0.4. 

Figures 3 and 4 indicate the effect of D32 o n  the energy and intermittency spectra. In both cases 
the Reynolds number is 1000, ~b is 0.1 and Rr is 0.4. The large drop size in figure 3 (032----2 mm) 
leads to annihilation of  the smallest eddies, which shows up as a sharp drop-off in the intermittency 
spectrum. In figure 4, the drops are smaller with D32 ---- 0.1 mm. In this case, the drops do not have 
enough kinetic energy to cause disintegration of  an eddy during a collision. Consequently, the eddy 
intermittency is unaffected by the drops. Examination of  the single- and two-phase spectra in figures 
3 and 4 reveals trends similar to those observed in figures 1 and 2. The second phase has a negligible 
effect on the large eddies, while a sharper "cut-off"  is observed at the lower end of the two-phase 
spectrum. This cut-off is slightly steeper in the case of  large drops, indicating that the drol~eddy 
effects are more prominent. This point is exemplified by entries 4 and 5 in table 2 in which the 
relative drop-eddy energy losses are seen to be about 8% higher for the case with large drops. 

In addition to the possibility of  eddy shattering in dispersions with large drops, the geometric 
limitation that large drops cannot reside within small eddies translates into preferential residence 
of  large drops in large or mid-sized eddies. The result is that in figure 3 the drops of  size 2 mm 
are subjected, on the average, to an environment which is somewhat different from that experienced 
by the drops of  size 0.1 mm in figure 4. This argument is exemplified in figures 5 and 6, in which 
the "local" number densities associated with n eddies, with n taking the values 1, 4, 8 and 9, are 
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plotted for the two cases. For the case of large droplets, run 4 in table 2, the number densities for 
n = l, 4 and 8 are very similar (figure 5). The smallest eddies (n = 9), however, look very different. 
The sharp cut-off is due to the prohibition of drops larger than a specified size. The results of run 
5 in figure 6 show, however, that when the drops are much smaller than the Kolmogoroff  
microscale, the number densities associated with all four eddy sizes are identical, i.e. the four curves 
in figure 6 are superimposed. From table 3, however, the "local" phase fractions @, vary with the 
eddy size n. When the Sauter mean diameter is large, this trend is expected since a large section 
of drop distribution is prohibited from residing within the smallest eddies. Despite the small drop 
size, however, a significant variation in local phase fraction is observed in run 5. This observation 
is discussed later in this section. 

From the above observations, two effects of drop size can be identified. First, the model predicts 
that large drops could annihilate the smaller eddies, and hence modify the turbulent structure and 
the drop environment. Second, geometric limitations prohibit large drops from residing in small 
eddies. Hence, the mean environment for these drops is somewhat different from that of 
sub-microscale droplets. The latter is in agreement with the observation that the motions of 
sub-microscale drops and drops in the inertial size range are driven by different mechanisms (Hinze 
1975). 
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Table 3. Variation of local phase fraction and local mean drop size with eddy size 

R u n  4 R u n  5 R u n  6 
Eddy 
size n ~b. (%) a. (mm) ~. (%) a. (mm) 4). (%) a. (mm) 

I 9.3 1.06 9.3 0.053 10.9 1.06 
2 9.4 1.06 9.4 0.053 11.0 1.07 
3 9.7 1.06 9.5 0.053 I 1.2 1.07 
4 10.0 1.06 9.7 0.053 I 1.5 1.07 
5 10.7 1.06 10.0 0.053 12.2 1.07 
6 12.1 1.06 10.5 0.053 13.8 1.07 
7 15.7 1.07 11.5 0.053 17.0 1.07 
8 11.8 1.07 14.0 0.053 2.0 0.67 
9 1.4 0.68 12.4 0.053 0.33 

The maximum permissible dimensionless drop size Rf is the only model parameter  appearing in 
the modeling of  the interphase interaction terms. This parameter  has no effect if the drops are much 
smaller than the smallest eddy, as in run 5. A comparison of  runs 4 and 6 (figures 3 and 7) shows 
the effect of  changing Rf from 0.4 to 0.2. A small difference is observed in the intermittency 
spectrum at large wave numbers, while the energy spectra remain virtually unchanged, as confirmed 
by the relative drop-eddy losses in table 2. In both cases, the eddy intermittency of  the smallest 
eddies is affected by eddy shattering. In figure 7, however, the effect is less pronounced. The primary 
difference between the two cases lies in the drop distribution among the various eddy sizes, as 
observed from figures 5 and 8. The small value of  Rf in figure 8 has the effect of  prohibiting large 
drops from the number  densities of  the two smallest eddy sizes. Only the number density of  the 
smallest eddy size is modified in figure 5. This redistribution of drop sizes is likely to play a more 
significant role in the determination of  the overall drop distribution in breaking and coalescing 
systems, since the rates of  breakage and coalescence are determined by the turbulence properties 
of  the embedding eddy. In the present case, however, the energy and intermittency spectra are fairly 
insensitive to the model parameter.  

The overall phase fraction ~ is the parameter  which has the most significant effect on the energy 
spectrum. In runs 4, 7 (figure 9) and 8 (figure 10), the phase fractions are 0.1, 0.2 and 0.01, 
respectively. For  ~ = 0.01, virtually no effects of  the dispersed phase on the spectra are discernible. 
The relative drop-eddy loss from table 2 is barely 12%. For  t~ = 0.2 in figure 9, the drop-off  in 
the intermittency indicates that the smallest eddies are almost completely annihilated, and the 
two-phase energy spectrum indicates that they contain virtually no energy. All the effects are more 
pronounced, and the viscous cut-off is steeper. The relative eddy-drop loss from table 2 is 82.5% 
in run 7 as compared with 63.2% in run 4. The drop size distributions for all three runs, on the 
other hand, are virtually identical, as observed by comparing figures 5 and I1. This observation, 
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Figure 8. Number densities for run 6. 

along with the number density plots in figures 6 and 8, suggest that the drop-eddy events of 
entrapment, exit, etc. do not seem to change the shape of the number density curve considerably, 
although they can have a significant effect on the local phase fraction qbn, and the energy and 
intermittency spectra. 

On examining the results of the computer runs, a trend was observed in the variation of local 
phase fraction ~b, with the eddy size. Table 3 presents the local phase fractions of three separate 
runs. In all cases, ~b, undergoes a single maximum at the second or third smallest eddy size. In runs 
4 and 6 a large fraction of the drops are larger than the maximum permissible in the smallest eddy. 
Due to this exclusion effect, the phase fraction in the smallest eddy is very low. In run 5 the drops 
are small, however, the exclusion effect is absent. The single maximum, however, still persists. 
Although this phenomenon could be an artifact of the model, the exclusion effect discussed earlier 
might play an important role in real systems by controlling the environment of the drop processes. 
Obviously, this effect also affects the mean drop size associated with the small eddies, as observed 
in table 3. 
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3.2. Comparison with previous studies 

The results presented here are in qualitative agreement with earlier work. A typical plot of the 
two-phase energy spectrum (e.g. figure 1) indicates that particle-fluid interactions modify the 
spectrum, especially at high wave numbers. This behavior has been noted by several authors 
(Lumley 1957; Meek & Jones 1973; A1 Taweel & Landau 1977; Calabrese & Middleman 1979) and 
attributed to interaction phenomena such as crossing-trajectories and inertial effects. The former 
refers to the phenomena by which particles may not remain within a given region of correlated 
fluid but may instead migrate from one region to another. Although the crossing-trajectory effect 
is more dominant in non-neutrally buoyant suspensions with substantial free-fall velocity, Hinze 
(1971) observes that particle dispersion coefficients in neutrally buoyant suspensions can be greater 
than the fluid dispersion coefficients, and attributes this phenomenon to crossing-trajectories. As 
noted by Lumley (1957), the rate of energy cascading, determined by the slope of the energy 
spectrum in the inertial region, is essentially unchanged by the particles, whereas the high-frequency 
turbulence structure is damaged substantially. 

Several authors have observed changes in local turbulence properties, such as turbulent kinetic 
energy, dissipation rate and eddy viscosity in the presence of particles (Lumley 1957; Kuchanov 
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& Levich 1967; Abramovich 1971; AI Taweel & Landau 1977; Genchev & Karpuzov 1980). 
These authors note "additional dissipation" due to the presence of a dispersed phase. In the 
present study this added dissipation is determined by modeling interphase interactions, but the 
power input to the cascade, determined by the Reynolds number, is maintained at the same value 
for each pair of runs (single-phase and two-phase). Since energy is conserved in the cascade, the 
energy dissipated at steady state is the same for each pair. In practice, however, in order to maintain 
the same mean velocity in the presence of particles, greater power input (and hence energy 
dissipation) would be required. The kinetic energy of turbulence at a given power input, 
proportional to the area under the energy spectrum, is also seen to change in the presence of 
particles. These effects have been attributed to interaction phenomena such as (1) the entrainment 
and retardation by drag of foreign particles populating the fluid volume (Abramovich 1971; 
Genchev & Karpuzov 1980) and (2) the additional breakdown of eddies due to dust (Genchev & 
Karpuzov 1980). 

The model development in the present work is similar to that of Lewalle et al. (1987). It is 
therefore instructive to compare the results of these two studies. 

The results of Lewalle et al. (1987) indicate that large drops tend to exert a somewhat uniform 
damping effect spread over the lower and central regions of the spectrum, whereas tiny droplets, 
much smaller than the microscale, create a sharp drop in the energy at high wave numbers. In the 
present investigation, however, the drop size does not seem to affect the severity of the cut-off 
significantly. Small drops have a pronounced effect on the spectrum calculated by Lewalle et al. 
(1987) because the calculated drop-drop collision frequency, which is proportional to the square 
of the number of drops, is very large when the drops are small. Lewalle et al. (1987) also 
assume completely inelastic drop-drop collisions. Due to a combination of these effects, collisions 
between small drops contribute significantly towards the damping of the two-phase energy 
spectrum, especially in the high wave number range where the small eddies are particularly 
susceptible to dissipative interactions. A study of the relative velocity and the energy loss during 
collision in real systems would help resolve the actual effect of drop-drop interactions on the 
two-phase spectrum. 

As observed earlier in this paper, the drop-eddy events incorporated in the model do not seem 
to affect the shapes of the local drop size distribution (e.g. figure 5). The number density curves 
resemble the Chen-Middleman volume density curve used for initialization of the overall density 
except for possible truncation due to the exclusion effect in the smaller eddies. Hence, in the absence 
of breakage and coalescence, it may be possible to represent the entire drop population by a single 
curve, and to determine the "local" number densities using the "local" intermittency and phase 
fraction. This procedure would require a method, perhaps a correlation, to determine the phase 
fractions associated with all eddy sizes. If this simplification can be achieved, no number density 
equations need be solved. As discussed earlier, the calculation of Lewalle et al. (1987) employs such 
a treatment. In the presence of breakage and coalescence, however, the "local" drop distributions 
are likely to vary with eddy size. In this case, the entire set of equations [1]-[3] would have to be 
solved. If the "shapes" of the distributions are similar, however, a single number balance for the 
entire population would be sufficient. 

Due to a variety of difficulties in obtaining experimental data and the complicated nature of the 
theoretical problems, few studies have been conducted to examine the effects of a dispersed phase 
on the turbulent energy spectrum. Consequently, the authors could not find a study which offered 
a precise quantitative comparison for the two-phase cascade model. The models of Owen (1969) 
and A1 Taweel & Landau (1977) do, however, provide some basis for comparison. 

Owen bases his analysis on the assumption that, under certain conditions, the energy input 
to the turbulence is afforded entirely by the mean motion of the gas. In some sense, this 
situation is analogous to a two-phase turbulent energy cascade, with a fixed power input of 
magnitude as determined by the large eddy Reynolds number. Owen considers the case when 
t*<<t~, where t* is the particle relaxation time and t,. is the characteristic time of an energy 
containing eddy. Then, relative to the eddy, the particle will possess a motion only during a 
time comparable with t*. In that period, assuming Stokes flow, the particle will be acted upon by 
a force 

F = 3rt# dpu [10] 
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where/~ is the viscosity, dp is the particle diameter and u is the particle velocity. Owen then estimates 
the average rate of working during an eddy lifetime and the increase in the rate of turbulent energy 
dissipation, hence arriving at [5] and [6]. 

Equation [6] is used to calculate the kinetic energy of turbulence in the presence of a dispersed 
phase, for all the runs reported in this study. This quantity is compared with the predictions of 
the two-phase cascade model in figure 12. The predictions of the two models are within about 4% 
of each other. 

Owen's model only yields a crude estimate of an integrated quantity--the kinetic energy of 
turbulence. As explained earlier, A1 Taweel & Landau (1977) present a simple model to predict 
the modifying effect of a dispersed phase on the entire turbulent spectrum. Their model is based 
on Kolmogoroff's concept of spectral energy transfer and takes into account the additional energy 
dissipation resulting from the inability of the dispersed particles to follow the turbulent eddy 
fluctuations completely. It seems, however, that their model is applicable only when the primary 
cause of the relative velocity between the two phases is the density difference. Contrary to 
observation (c.f. Hinze 1971), the model predicts no effect of the dispersed phase on the turbulent 
structure in neutrally buoyant systems. The model seems applicable only in the regime in which 
density differences drive the relative motion between the phases. The authors apply the model 
effectively to describe gas-solid jets. No attempt is made to describe relative motion due to 
phenomena such as crossing trajectories. Their model could be used along with the two-phase 
cascade model, however, to examine the importance of density effects relative to the mechanisms 
postulated in this work and to provide a quantitative comparison for two-phase systems. 

Figure 13 shows a typical comparison between three spectra calculated from: (a) the single-phase 
cascade model, (b) the two-phase cascade model and (c) the AI Taweel and Landau model. The 
two two-phase spectra are in close agreement at smaller and intermediate wave numbers but show 
significant differences in the large wave number range. This result is not unexpected since the 
Kolmogoroff spectrum, upon which the AI Taweel & Landau model is based, is not valid in the 
viscous sub-range. 

To compare the importance of the particle-fluid interaction mechanisms postulated here against 
the density difference mechanism, the AI Taweel & Landau model was used to calculate two-phase 
turbulent kinetic energies for all computer runs reported in this work. The density ratio Pd/Pc was 
adjusted in each run until the resulting kinetic energy was close enough to that calculated from 
the two-phase cascade model. Table 4 indicates those values of the density ratio. Pd/Pc seems to 
be strongly correlated to the particle size, increasing as D32 is decreased. For particles of size 2 mm, 
Pd/Pc values lie between 2 and 2.5, while for particles of size 0.1 mm, Pa/P, > 10. It could be inferred 
from this observation that (1) when the particles are extremely small, mechanisms unrelated to 
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densi ty  differences de te rmine  the par t ic le  m o t i o n  and hence the energy spec t rum and (2) for  
so l id - l iqu id  or  l i qu id - l iqu id  systems with a densi ty  ra t io  o f  less than  2, densi ty  difference could  
p lay  a secondary  role in the two-phase  spect rum.  

As  a final compar i son ,  E lghobash i  & Truesdel l  (1993) cons ider  tha t  the direct  s imula t ion  o f  
decaying  turbulence  with  b u o y a n t  par t ic les  a t  very small  phase  fract ions.  Their  ca lcula ted  energy 
spec t ra  exhibi t  some differences with our  mode l  results  in tha t  the effects o f  phase  fract ion,  par t ic le  
response  t ime and  par t ic le  d iamete r  are no t  a s imple m o n o t o n e  weakening  o f  the energy spectrum.  
It  is unclear  whether  this is a consequence  o f  the finite t ime required for spectral  t ransfer  in a 
decaying  field, or  o f  a par t i c le -media ted  energy input  to small  eddies.  M o r e  deta i led  results f rom 
similar  large-scale compu ta t i ons  m a y  lead to modi f ica t ion  o f  in terphase  dynamics  in inexpensive 
models  such as ours.  

4. C O N C L U S I O N S  

In this paper ,  the mutua l  in terac t ions  between a d r o p  popu l a t i on  and a homogeneous  turbulen t  
energy spec t rum are  s tudied by the analysis  o f  numer ica l  results f rom the so lu t ion  o f  the two-phase  
cascade  mode l  equat ions .  I t  is demons t r a t ed  tha t  the s imul taneous  evolu t ion  o f  the d r o p  number  

Table 4. Comparison with the model of AI Taweel & Landau [6] (ATL model) 

Dimensionless Dimensionless 
Po/Pc in KE from KE from 

Run No. NR, ~ D3z R r ATL modelt cascade ATL model 

1 500 0.1 1.0 0.4 4.0 0.900 0.909 
2 500 0.2 1.0 0.4 4.9 0.806 0.808 
3 500 0.01 1.0 0.4 3.5 0.989 0.989 
4 1000 0.1 2.0 0.4 2.2 0.893 0.881 
5 1000 0.1 0.1 0.4 38.0 0.897 0.896 
6 1000 0.1 2.0 0.2 2.2 0.880 0.883 
7 1000 0.2 2.0 0.4 2.3 0.805 0.801 
8 1000 0.01 2.0 0.4 2.0 0.988 0.990 
9 4000 0.1 1.0 0.4 2.1 0.886 0.887 

10 4000 0.1 0.1 0.2 10.5 0.887 0.890 
11 4000 0.1 0.01 0.1 750.0 0.886 0.882 
12 4000 0.1 1.0 0.1 2.2 0.872 0.873 

tPd/Pc is adjusted until the two models give similar KE values. 
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density and the energy spectrum can be described by the model. A semi-discretization method is 
used to solve the two-phase cascade model equations for homogeneous, neutrally buoyant 
turbulent dispersions with no breakage or coalescence. The computational results show that the 
number densities local to eddies of a specific size bear resemblance to the overall number density, 
with the exception that large drops are not permitted in small eddies. The variation of the local 
phase fraction ~br¢ with n displays a maximum, situated around the second or third smallest eddy. 
The relative energy loss contributions from drop-eddy terms in [1] vary from about 8% for some 
cases with a phase fraction of 0.01, to over 82% in some instances with a phase fraction of 0.2. 

The integrodifferential equations solved in this study contain integrals with points of disconti- 
nuity in the integrands which are determined by the instantaneous values of the dependent 
variables. The set of equations also includes a partial integrodifferential population balance for 
each eddy size which contains feed and exit terms representing drop-eddy phenomena. The 
semi-discretization method employed gives rise to a set of ordinary integrodifferential equations 
which are solved simultaneously with the ordinary integrodifferential energy and intermittency 
equations by an integrator package. 

The computational results are in agreement with previous studies on two-phase turbulence. From 
comparisons with the model orAl Tawed & Landau (1977), it could be inferred that if the particles 
are small (0.1 mm or less in diameter), or if the density ratio is much less than 2, mechanisms 
unrelated to density differences seem to determine particle motion and hence the two-phase energy 
spectrum. 
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